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Abstract Understanding how spatial factors shape
species distribution and geographic range remains
a central question in community ecology, particu-
larly for microorganisms with high dispersal capaci-
ties. Here, we applied variation partitioning to assess
the impact of multiple spatial mechanisms on the
B-diversity of a bacterioplankton metacommunity in
60 shallow lakes distributed across a broad landscape.
Linear overland distances between sites provided the
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best explanation for bacterioplankton p-diversity,
likely reflecting the dominance of ubiquitous, highly
abundant bacteria. In contrast, rarer bacteria were
associated with local neighborhoods, suggesting
lower dispersal capacities. This pattern aligns with
observations in other taxa and indicates a potential
rescue effect. Moreover, regardless of abundance,
most bacteria appear to occupy a geographic range of
600-700 km. Our results suggest that while determin-
istic factors play a critical role in shaping freshwater
bacterial biodiversity, the spatial context also con-
tributes to explaining bacterioplankton dissimilarity
and community dynamics. Importantly, selecting the
appropriate spatial metric—whether based on pres-
ence/absence or abundance data—is crucial for accu-
rately capturing these patterns.

Keywords Variation partitioning - f-diversity
partition - Spatial dynamics - 16S amplicon
sequencing

Introduction

Freshwater bacteria are part of the key organisms for
ecosystem functioning, playing essential roles in bio-
geochemical cycles and maintaining close relation-
ships with other living organisms, including those that
influence human health (Newton et al. 2011; Chiriac
et al. 2022). Consequently, the relationship between
microbial community structure and environmental
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variation at local scales has been extensively studied
over the decades. These studies consistently highlight
factors such as pH, salinity, and temperature as pri-
mary drivers of microbial biodiversity across diverse
contexts (Lindstrom et al. 2005; Zhang et al. 2021).
However, the longstanding idea that their high dis-
persal capacity means spatial factors do not influence
their biodiversity, and that this biodiversity is solely
determined by local environmental conditions—i.e.
everything is everywhere, but the environment selects
(Baas Becking 1934)—has been challenged by recent
advances in DNA sequencing and bioinformatics.

These advances have revealed that microbial bio-
diversity is significantly higher than previously esti-
mated (Rappé and Giovannoni 2003; Callahan et al.
2016). This finding stems from the discovery of very
low-abundance and narrow-range taxa within micro-
bial communities, often referred to as the “rare bio-
sphere” (Pedr6s-Alié 2012). The identification of this
rare biosphere has significant implications on how
we interpret spatial features of biodiversity, as these
organisms may respond differently to geographic dis-
tances (Mateus-Barros et al. 2021) or environmental
heterogeneity (Huber et al. 2020) compared to more
abundant and widely distributed microbes. Neverthe-
less, the relationship between microbial dynamics and
spatial features remains unclear. For instance, recent
studies analysing bacterial dissimilarity from distinct
perspectives have reported conflicting results, likely
due to the use of different methodologies. Some stud-
ies comparing the influence of organism size on spa-
tial features of biodiversity have demonstrated a sig-
nificantly higher impact of stochastic processes on
microbial communities (Farjalla et al. 2012; Soininen
et al. 2013). In contrast, other studies that focused
solely on microorganisms have emphasized the
greater relative importance of environmental filter-
ing (Jyrkinkallio-Mikkola et al. 2017; Fillinger et al.
2019). Therefore, understanding how these organ-
isms organize in space, and identifying mechanisms
beyond environmental filtering that influence their
distribution, could reveal critical insights into micro-
bial ecology.

In this sense, study of the relative role of local
and regional processes in shaping spatial community
properties has received growing attention over the
past few decades (e.g. Ricklefs and Jenkins 2011).
Within this context, the concept of a metacommunity
has emerged as a powerful ecological framework. It
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posits that a group of local communities are inter-
connected through the dispersal of multiple species,
which may potentially interact with each other (Wil-
son 1992; Leibold et al. 2004). A well-established
and straightforward way to identify the processes
influencing metacommunity structure is by measuring
the observed dissimilarity in community composition
between pairs of local communities (Whittaker 1960,
1972). This dissimilarity is a diversity dimension
known as p-diversity.

Multiple approaches have been proposed to assess
and interpret patterns of f-diversity. These can be
broadly categorized into qualitative and quantita-
tive methods (Anderson et al. 2011). Qualitative
approaches rely on species presence/absence data,
which are more commonly available and can also be
derived from other types of data, thereby facilitating
access to larger datasets and insights into composi-
tional variation. In contrast, quantitative approaches
incorporate (relative) abundance, which are cru-
cial for understanding the mechanisms that shape
metacommunity structure (Anderson et al. 2011).
B-diversity can be influenced by a range of intrinsic
and extrinsic factors, including historical contin-
gency, trophic level, variability in local factors and
interactions, as well as the type of environment inhab-
ited (Baselga et al. 2011). Geography also plays a
critical role, both directly and indirectly, by altering
environmental heterogeneity and affecting the disper-
sal opportunities of each species (Martiny et al. 2011;
Soininen et al. 2018). This process varies across spa-
tial scales (Vellend 2010; Baselga et al. 2011) and is
not necessarily dependent on specific dispersal abili-
ties (Gaston 2009).

In freshwater microbial communities, large-scale
dispersal appears to be related to both specific life-
styles and ecological context (Huber et al. 2020;
Ruiz-Gonzailez et al. 2015). While some of these
organisms are commonly attached to the particles
they degrade to feed on, others are found moving in
the water column, feeding on smaller, less complex
particles available there or synthesizing nutrients
from sunlight (Chiriac et al. 2022). Thus, because
they are free in the water column, organisms of this
second group can be more easily transported to other
sites. Moreover, the composition of microbial spe-
cies can differ significantly depending on the region
where a community is found. For example, headwa-
ter communities are compositionally more similar to
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the surrounding soil communities than to those at the
mouth of the same river (Ruiz-Gonzalez et al. 2015).
In addition, even when comparing communities in
more similar contexts, such as two sites in a flood-
plain, the degree of connectivity between study sites
directly affects the observed fB-diversity (Huber et al.
2020). Finally, long-distance dispersal does not seem
to be governed by a single event, but rather by small-
scale dispersal events over short distances, with a
linear increase in the area reached by a species (Hoe-
tzinger et al. 2024), in a pattern likely guided by the
local abundance reached by each bacterium (Mateus-
Barros et al. 2021). Furthermore, research has shown
that species sorting is more pronounced among the
most widespread bacteria (Székely and Langenheder
2014), and that these taxa tend to have higher specia-
tion rates (Sriswasdi et al. 2017), which can be cap-
tured at the amplicon sequence variant (ASV) level.
Notably, the geographic range of freshwater bacteria
remains largely unknown due to a lack of comparable
studies conducted on a sufficiently large scale (but see
Hoetzinger et al. 2024).

Bacteria are passive dispersers, which means
that their movement across aquatic environments is
driven not only by water flows (Lansac-Toha et al.
2020, Sadeghi et al. 2024), but also by attachment
to larger organisms (Grossart et al. 2010) and wind
(Smith et al. 2013). In this context, some theoretical
approaches can be used to determine the main way
dispersal impacts bacterial p-diversity. If only ‘the
environment selects’ as stated for many decades, the
geography will only reflect the spatial structure of
environmental factors (Borcard et al. 1992). On the
contrary, considering the possibility of a sufficient
homogeneous distribution of deterministic factors,
the B-diversity will decrease as a function of increas-
ing geographical distance (Dray et al. 2006). Other
possibilities are a stronger connection by shorter
distances reflecting the low dispersive capacity of
the large number of rare bacteria in this data (Peres-
Neto and Legendre 2010), the isolation generated by
distinct drainage basins that make up this landscape
which should be reflected by an increased similarity
between sites located in the same watershed, and a
connection between sites proportioned by river flow
(Blanchet et al. 2008a, b). In light of these disper-
sal mechanisms, distinct theoretical approaches can
help us understand how dispersal influences bacterial
B-diversity.

In this study, we aimed to investigate the influence
of environmental and spatial mechanisms on bacte-
rial occupancy within a tropical bacterioplankton
metacommunity. To reach this objective, we recov-
ered the most important environmental factors and
used different dispersal models to address the rela-
tive importance of these aspects to the structure of
a bacterioplanktonic metacommunity across a set of
60 tropical shallow lakes scattered over a matrix of
nearly 250,000 km? Beyond environmental factors,
we sought to determine the extent of bacterial ASV
occupancy by integrating spatial components from
the metacommunity theoretical framework. Specifi-
cally, we aimed to elucidate the impact of dispersal
mechanisms, including river flow (Fig. 1A), overland
distances (Fig. 1B), neighborhood effects (Fig. 1C),
and geographical barriers (Fig. 1D), on bacterial
B-diversity and the size of geographic range. By
adopting a comprehensive set of qualitative and quan-
titative methods, we sought to identify the relative
importance among geographic mechanisms affecting
bacterioplankton metacommunity patterns. In doing
so, we aspire to address the fundamental question of
how far bacteria can establish, thereby advancing our
understanding of spatially related local and regional
processes in microbial metacommunities.

Methods
Study design

This study was performed using a dataset obtained
from 60 headwater shallow lakes covering a region
of nearly 250,000 km? in S3o Paulo state, southeast
Brazil (Fig. 1). This region has a tropical climate
and is characterized by Cerrado (Brazilian savannah)
and Atlantic Forest (semi-deciduous humid forest).
Located in a region of intense agricultural activity,
these lakes are generally small reservoirs, dammed
to fulfill water needs of landowners. The study area
lies within three sub-basins of the Parani River basin
(i.e. Grande, Paranapanema, and Tiet€ rivers) and the
coastal formation, which rises rapidly from sea level
to over 1000 m before descending toward the conti-
nent’s interior. In line with other findings, the tropi-
cal climate prevents microbial community dynamics
from being mainly driven by temperature dynam-
ics (Fig. S1A, C). Also, possibly due to the intense
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Fig. 1 Location of the sixty headwater shallow lakes that were
sampled over a large tropical landscape covering four distinct
hydrological basins. The main rivers (blue lines) and basin
delimitations (black dashed lines) were also indicated. The
large zoomed figures illustrate how each spatial aspect was
considered for the variation partitioning: A distance between
local communities through river flow, the connectivity frac-
tion; B spatial overland distance between local communities,

human activities, precipitation variation also appears
not to affect these community dynamics (Fig. S1B,
D), instead, they are more likely to respond to vari-
ation in pH and organic compounds (Mateus-Barros
et al. 2021). Sampling was carried out between June
2012 and July 2016. To minimize bias, samples were
selected at equidistant intervals (when possible), to
create a homogeneous grid across the area (Fig. 1)
that encompassed all geographical contexts assess-
able in this study.

In the field, we measured environmental vari-
ables (temperature, conductivity, pH) using a multi-
parameter probe (YSI, Yellow Springs, USA) and
filtered sub-surface water for laboratory analyses
(nutrients, carbon supply, chlorophyll-a, envi-
ronmental DNA). Altitude and geographic coor-
dinates were obtained using a GPS. Samples for
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the spatial fraction; C isolation between local communities
caused by geographical barriers, the region fraction; and D
increased connectivity to neighboring sites, the neighborhood
fraction. The line thickness in the examples represents hypo-
thetical connectivity strength (flow of individuals) between the
pairs of sites under the four dispersal possibilities described
above

nutrient analysis were obtained by filtering lake
water through 0.45 pm polycarbonate membranes
previously washed with ultrapure water to prevent
carbon contamination from the filter, and stored in
amber bottles in a freezer at —20 °C until analy-
sis. Dissolved organic carbon (DOC) was meas-
ured using a TOC-V (Shimadzu®, Kyoto, Japan).
Dissolved nutrient concentrations were determined
using a Ion Chromatography System (Thermo Sci-
entific®, Waltham, Massachusetts, USA), and dis-
solved inorganic nitrogen (DIN) was calculated by
adding the values obtained from nitrite, nitrate, and
ammonium. Additionally, a FS5 Spectrofluorometer
(Edinburgh Instruments®, Livingston, UK) was
used to estimate the Tryptophan-like fluorescent
dissolved organic matter (T-FDOM), calculated
as the ratio between the fluorescence of dissolved



Aquat Ecol

organic matter fluorescence and that of quinine
sulfate (0.001 mg/L dissolved in 0.1 M H,SO,) at
455 nm excitation and 355 nm emission. Chloro-
phyll-a concentration (used as a proxy for trophic
state) was obtained by filtering 100-500 ml of
water through a glass fibre filter (Macherey—Nagel®
GF-6), extracting with ethanol (90% v/v at 80 °C)
in the dark (Marker 1980; Mush 1980), and quanti-
fying by spectrophotometry (Lorenzen 1967). This
dataset includes equal sample sizes across trophic
state categories (oligotrophic, mesotrophic, and
eutrophic) and hydrologic basins. More details on
the study site and environmental variable analyses
can be found in Mateus-Barros et al. (2021).

Sampling, sequencing, and bioinformatics

To analyse microbial community composition and
diversity, 500 ml of surface water were pre-filtered
through a glass-fiber filter of 1.2 pm mesh (BOECO®
MGC) to retain eukaryotes, large particles, and
attached prokaryotes. Afterwards, 200-500 ml of
filtrate were passed through 0.2 pm polycarbonate
membranes (Millipore® Isopore™ 0.2 pm GTBP) to
retain free-living prokaryotes.

Free-living bacterial DNA was extracted using a
phenol—chloroform extraction protocol. The ampli-
fication was performed with the 341F (5'-CCTACG
GGNGGCWGCAG-3) and 805R (5-GACTAC
HVGGGTATCTAATCC-3') primers (Herlemann
et al. 2011). Following amplification, fragments were
sequenced using the Illumina MiSeq 2 X250 paired-
end reads. A full description of the molecular analy-
ses can be found in Mateus-Barros et al. (2019). Raw
sequences were processed using the DADA?2 pipeline
(Callahan et al. 2016) implemented in the R envi-
ronment (R Core Team 2019) to generate a table of
Amplicon Sequence Variants (ASVs). Taxonomic
identification was assigned by blasting against the
SILVA database version 132 (Yilmaz et al. 2014). The
initial ASV table was filtered to remove sequences
assigned to the Archaea domain, mitochondria, and
chloroplasts and was normalized to equal sampling
depth to create a subsampled ASV table (14,239
reads); finally, ASVs with a total abundance of fewer
than 10 reads were removed. Rarefaction curves from
these samples, after rarefaction and filtering of low-
abundance ASVs, can be seen in Figure S2.

Data analyses

To determine the roles of species’ presence and abun-
dance in the ecological aspects investigated here, the
first step was to transform the ASVs table into two
separate tables: (1) a quantitative data table with rela-
tive abundance, which was used to perform analyses
based on Bray—Curtis distances, and (2) a qualita-
tive data table using ASV presence/absence at each
site, used for analyses based on Jaccard distances.
The comparison between qualitative and quantitative
approaches should be interpreted with caution. This
is because the sequences read by NGS equipment are
limited by their maximum sequencing capacity and
never capture the complete number of reads present
in a sample. As a result, the data have a composi-
tional nature (Gloor et al. 2017) and should always be
treated as relative rather than absolute. In any case,
the variation in ASV occurrence across sites is valu-
able for interpreting ecological processes. All forth-
coming analyses (see below) were performed using
both quantitative and qualitative data matrices.

To assess the role of local environmental and
regional geographic features on the p-diversity
observed in the bacterial metacommunity described
above, we applied variation partitioning (Bor-
card et al. 1992) approach to dissimilarity matrices
obtained from the beta.pair and beta.pair.abund
functions of the betapart package (Baselga 2010;
Baselga and Freckleton 2013). A distance-based
redundancy analysis (dbRDA) was used to identify
the factors employed in the variation partitioning
(Legendre and Anderson 1999). Variation partition-
ing is a well-established approach used to determine
the relative importance of different biotic and abiotic
factors in shaping observed p-diversity in a given
metacommunity.

To identify the dispersal features applied to
variation partitioning, we used a set of eigenvec-
tor analyses. First, to test the potential connections
between sites (Fig. 2A), we employed an Asymmet-
ric Eigenvector Map (AEM) model. This model is
calculated using a weight matrix that assigns “1” to
river edges connecting two site pairs, while “0” is
assigned to edges not connecting these sites (Blan-
chet et al. 2008a, b). The resulting eigenvector matrix
was referred to as the connectivity fraction. Second,
the linear decay of similarity was calculated using a
distance-based Moran Eigenvector Map (dbMEM)
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Fig. 2 Fluxogram showing all steps performed in the analy-
sis of variation partitioning of p-diversity between spatial and
environmental factors. The geolocation of each site was used
to create distinct eigenvectors that model distinct geographic
factors that may be impacting the metacommunity: river con-
nectivity (A), overland spatial distances (B), neighborhood
distances (C) and regional isolation (D), these matrices were
filtered to the selection of relevant factors and quality check

approach to produce eigenvectors based on overland
distances between sites (Dray et al. 2006), thereby
recovering the space fraction (Fig. 2B). Third, the
neighborhood fraction (Fig. 2C) was estimated using
a MEM analysis (Peres-Neto and Legendre 2010)
complemented by the weight formula 1 —x/max(geo).
Unlike the space fraction, this weight formula modi-
fies the connection/distance relationship to a bino-
mial-like shape, increasing the importance of shorter-
distance connections. Finally, to assess the isolation
created by drainage basins and obtain the region
fraction (Fig. 2D), we used a MEM approach, deter-
mining the weight matrix by assigning “1” to site
pairs located within the same basin and “0” to pairs
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before composing the geographic fractions (E). The standard-
ized environmental factors also passed through the relevance
and quality checks before composing the environment fraction
(F). By comparing these factors with qualitative and quantita-
tive dissimilarity matrices (G), the variation partitioning (H)
was performed based on a dbRDA. Finally, a CCA was used to
test for significance (I)

in different regions. All eigenvectors were generated
using the adespatial package (Dray et al. 2020).
Following these computations, all matrices under-
went ordination with 999 permutations to select the
most relevant eigenvectors. To mitigate issues related
to spatial autocorrelation, we applied the R? ordina-
tion approach (Blanchet et al. 2008a, b; Bauman et al.
2018). This approach calculates an R? before adding
each eigenvector to the ordination and terminates the
analysis when the value reaches the R? for the global
analysis, even if some significant eigenvector remain
to be added (Fig. 3 shows all eigenvectors recov-
ered). The ordination test was performed using the
ordiR2step function of the vegan package (Oksanen
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Fig. 3 All eigenvectors recovered after the ordination step.
Black and white boxes indicate site groupings from each
model. Only the structures that significantly match the
observed microbial dissimilarity are displayed here. For the
qualitative approach, the significant eigenvectors were MEMS,

et al. 2016). The eigenvectors derived from the con-
nectivity were not significantly correlated with the
biological data (p>0.05) and were excluded from the
subsequent analyses. For the environment fraction
(Fig. 2G), environmental variables were standardized
(except pH), and forward selection was applied to
identify the relevant components.

The remaining variables (Fig. 2E, F) were com-
pared to both quantitative and qualitative dissimilar-
ity matrices (Fig. 2G) through variation partitioning
(Fig. 2H) (Borcard et al. 1992). Finally, a canonical
correspondence analysis (CCA) (Fig. 2I) was con-
ducted to determine the significance of each fraction.
All analyses were conducted at the R environment (R
Core Team 2019). To complement the variation parti-
tioning and evaluate whether p-diversity was mainly
driven by stochastic or deterministic processes, we
applied the P-nearest taxon index following Stegen
et al. (2013). Phylogenetic dissimilarities among
samples were compared to a null model based on
this metacommunity species pool. Values equal to or
greater than+2 were interpreted as deviating signifi-
cantly from the null expectation and, further, being

MEM?22 (space fraction), MEMI15, MEMI17 (neigborhood
fraction) and MEM4 (region fraction), while for the quanti-
tative approach the significant ones were MEM13, MEM23
(space fraction), MEM11, MEM15 (neigborhood fraction) and
MEM4 (region fraction)

primarily guided by deterministic processes, whereas
values not significantly deviating from the null expec-
tation were considered to be predominantly driven by
stochastic processes.

To further understand the role of increasing dis-
tances on the spatial fractions recovered, we calcu-
lated the maximum distance reached by each ASV to
establish nine distinct dispersal thresholds, ranging
from shorter distances (0—100 km) to the maximum
distances reached in this landscape (800-900 km).
These thresholds were then used to group the ASVs
by their frequencies and relative abundances. Also,
ASVs classified in clades previously recognized for
their regional abundance and/or involvement in rapid
and uncontrolled growth events (i.e. blooms) were
grouped. Finally, differences in abundance for each
grouped clade at each threshold of maximum distance
were assessed using Kruskal-Wallis and Dunn’s tests
to evaluate significant differences.

The raw sequence data used in this study are
deposited in the NCBI repository under accession
number PRINA411849, and are part of a continental
effort led by the Collaborative Network on Microbial
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Aquatic Ecology in Latin America (uSudAqua). More
details can be found in Metz et al. (2022).

Results

After rarefaction and filtering, a total of 3,738
ASVs classified within 22 phyla were obtained from
815,560 reads. In terms of richness, the three most
represented among the ASVs were Proteobacteria
(30% of the total), Actinobacteriota (26.64%), and
Patescibacteria (20.47%). When considering the
quantitative number of affiliated reads, the top three
phyla were Actinobacteriota (54.20%), Proteobacte-
ria (24.37%), and Verrucomicrobiota (5.60%).

Before variation partitioning, the ordination of
significant environmental variables showed that, for
the qualitative dataset (0.084 adj. R?) p-diversity was
related to pH (0.021 adj. R%; p=0.002), DOC (0.020
adj. R%; p=0.002), altitude (0.014 adj. R*; p=0.016),
T-FDOM (0.014 adj. R%; p=0.016), and DIN (0.008
adj. R% p=0.04), while for the quantitative dataset
(0.131 adj. R?) p-diversity was related to pH (0.042
adj. R% p=0.002), DIC (0.019 adj. R% p=0.006),
and altitude (0.018 adj. R?; p=0.016). These varia-
bles were then selected, and the other tested variables
(temperature, conductivity, and chlorophyll-a) were
excluded from subsequent analyses. All selected vari-
ables showed substantial variation among the sites
analyzed here (Table 1).

In the variation partitioning analysis (Fig. 4), all
comparisons indicated significant overall correlations.
The environment was the best predictor of B-diversity.
For the qualitative approach the environment con-
tributed alone with~6% of observed p-diversity,
while geography reached ~1.5%. For the quantitative

approach, environment remained to explain~6%,
while geography reached~3.7%. In this analysis, the
interaction between environment and geography also
showed important values, reaching 3.3 and 1.9% for
qualitative and quantitative approaches, respectively.
Finally, the geographic partitioning indicated that, for
both qualitative and quantitative approaches, neigh-
borhood, space, and region, in this order, explained
the geographic role on observed f-diversity. How-
ever, it is important to note that the unexplained frac-
tion consistently accounted for a substantial portion
of the variance. The B-Nearest Taxon Index showed
that 60.05% of the observed dissimilarities were pre-
dominantly explained by stochastic factors, while the
remaining 39.95% were explained by deterministic
ones (Fig. S3).

The frequency distribution of maximum overland
distances covered by each ASV (Fig. 5) followed a
bimodal-like shape, with one group of organisms
capable of dispersing shorter distances and another
group able to disperse across nearly the entire land-
scape. This bimodal distribution aligns with the rela-
tive abundance of each ASV, as bacteria that are more
abundant also tend to disperse over greater distances.
However, this pattern does not correspond to the fre-
quency of overland distances between sites within
this landscape, which follows a normal-like distribu-
tion. Regardless of abundance, most freshwater bac-
terial ASVs had a distribution range of 600-700 km.

When examining these ASVs based on the maxi-
mum distances they can reach (Fig. 6), we observe
a shift occurring beyond the 600-700 km threshold.
Bacterial taxa that surpass this range differ from
those restricted to shorter distances. Within the
Actinobacteriota phylum, the hgcl clade becomes
increasingly prominent at greater distances (p <0.05),

Table 1 Average and range
of tested environmental

parameters in the 60

tropical shallow lakes

Asterisks (*) indicate the
parameters selected after
ordination for the variation
partitioning analysis

@ Springer

Average Standard Deviation Minimum Maximum
Altitude (m)* 504.83 +230.03 7 1121
pH* 6.76 +1.02 4.79 10.1
Conductivity (uS/cm) 62.13 +79.53 0 470
Chlorophyll-a (mg/L) 16.62 +25.13 0.092 105.19
Temperature (°C) 23.16 +4.06 15.04 31.41
DOC (mg/L)* 8.8 +7.99 1.27 42.06
DIC (mg/L)* 4.79 +3.06 0.79 13.28
DIN (mg/L)* 1.27 +5.89 0.01 457
T-FDOM* 1.89 +1.27 0.38 6.32
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Fig. 6 The distribution of ASV representatives (A) and their
mean relative abundance (B) by the thresholds of maximum
distances reached. Clades previously recognized for their

not only showing the highest number of representa-
tives but also displaying a rise in relative abundance
as dispersal distances increase. In contrast, bacteria
belonging to Patescibacteria tend to decrease in rep-
resentation as the maximum distance between sites
increases (p<0.05). The Proteobacteria, another
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regional abundance and/or involvement in rapid and uncon-
trolled growth events (i.e. blooms) were highlighted

group with a substantial number of representatives,
maintains a relatively constant presence across this
spatial spectrum. However, the relative abundance of
Proteobacteria decreases with increasing spatial scale
(Rhizobiales, P<0.05; other_Alphaproteobacteria,
P <0.05; Limnohabitans, P <0.05; Polynucleobacter,
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P <0.05; other Gammaproteobacteria, P <0.05; other
Proteobacteria, P<0.05), except for the Rhizobi-
ales family, which exhibits an increase in both the
number of representatives and relative abundance at
larger maximum distances. Other relevant taxonomic
groups, such as Cyanobacteria (Cyanobium, P <0.05;
other Cyanobacteria, P=0.117), Verrucomicrobi-
ota (FuKuNI18, P=0.1036; other Verrucomicrobia,
P<0.05), and Planctomycetes (p<0.05), show a
more consistent representation across this spatial gra-
dient. For a detailed description of the global signifi-
cance and pairwise comparisons across each thresh-
old of distances, for each clade highlighted here, see
Table S1.

Discussion

In recent decades, the development of tools such as
powerful computers, molecular and sensing tech-
niques, and the facilitation of data dissemination via
the internet, has contributed to a shift in dominant
paradigms in ecology (Chave 2013). It has become
increasingly evident that addressing certain funda-
mental questions requires exploring other scales to
understand the drivers of observed patterns (Levin
1992). In this study, we used a large dataset of fresh-
water bacterial biodiversity aimed at applying some
conceptual frameworks to disentangle how differ-
ent geographical factors can affect bacterioplankton
p-diversity in a lake metacommunity.

To achieve this objective, we applied various mod-
els designed to assess the influence of different poten-
tial dispersal routes using variation partitioning (e.g.
Dray et al. 2006; Blanchet et al. 2008a, b; Peres-Neto
and Legendre 2010). We found that the environment
is the best predictor of bacterioplankton p-diversity
in shallow lake metacommunities, although spatial
factors also play a role, mainly for bacteria that are
not capable of overcoming long distances. The impor-
tance of each factor followed a hierarchy in which
p-diversity was primarily related to the environmental
fraction, and afterwards by dispersion, as evidenced
by distinct geographic features. This pattern was con-
sistent across several tested factors and approaches, a
result that was not previously expected, and reflects
the high dispersal capacity of dominant bacteria that
are able to overcome large distances and geographic
barriers (Lansac-Toha et al. 2020). However, we also

identified a group of rare and less dispersed organ-
isms that are mainly influenced by spatial features, as
evidenced by Figs. 5 and 6. The role of the environ-
ment as the main driver of p-diversity is a common
pattern described in the literature (e.g. Beisner et al.
2006; Winter et al. 2013; Jyrkdnkallio-Mikkola et al.
2017; Fillinger et al. 2019; Porcel et al. 2025). This
is especially attributed to pH, a well-known selec-
tive factor for aquatic bacteria (Lindstrom et al. 2005;
Nifio-Garcia et al. 2016; Griffero et al. 2024; Porcel
et al. 2025), which has previously been shown to be a
key factor in these sites (Mateus-Barros et al. 2021).
Here, we focused on refining the spatial analyses as
much as possible, aiming to encompass all relevant
dispersal routes that bacterioplankton can take. To
achieve this objective, we applied different models
that have been proposed to assess the role of geog-
raphy through variation partitioning (e.g. Dray et al.
2006; Blanchet et al. 2008a, b; Peres-Neto and Leg-
endre 2010). Despite some concerns regarding the
accuracy of this approach for determining the role
of environmental and spatial factors on metacom-
munity structuring (Gilbert and Bennett 2010), it has
been demonstrated that spatial autocorrelation can be
addressed through an appropriate correction (Bauman
et al. 2018).

Our findings indicate that the most effective geo-
graphic predictor of bacterioplankton B-diversity in
shallow lake metacommunities is the overland dis-
tance between sites (spatial fraction) in combination
with the other measured fractions, with most bacte-
rial ASVs having a distribution range of 600-700 km,
and the most abundant ones presenting an even higher
dispersion, reaching the maximum possible distance
for this dataset (800-900 km). This pattern likely
reflects the high dispersal capacity of dominant bac-
teria, allowing them to overcome large distances and
geographic barriers (Lansac-To6ha et al. 2020). How-
ever, we also identified a set of rare and less dispersed
organisms that are more consistently associated with
the Neighborhood feature, suggesting a lower disper-
sal capacity of these organisms compared to the more
abundant ones. This feature demonstrates that these
organisms should not be solely guided by local envi-
ronmental factors as long has been stated (Baas Beck-
ing 1934), instead, it seems to present spatial dynam-
ics similar to what is largely observed in groups that
disperse actively, like birds and mammals (Brown
1984; Matthysen 2005). This pattern indicates that
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bacteria can present a density-dependent dispersal
(Matthysen 2005), which is consistent with the res-
cue effect hypothesis (Gotelli 1991), where a given
area with a larger population of a species serves as
a dispersal source, and their distribution range tends
to correlate with the maximum local abundance they
achieve (Brown 1984). This implies that organisms
with greater adaptive capabilities tend to become
more abundant and eventually dominate the land-
scape (Gaston et al. 2000). In contrast, rare organisms
typically exhibit a clustered distribution and have lim-
ited dispersal capacities (Ruiz-Gonzélez et al. 2015;
Nifio-Garcia et al. 2016).

In this landscape, the dominant organisms were
classified within the hgcl clade. Tt is a group of
Actinobacteriota known for having a streamlined
genome (Chiriac et al. 2022) and an auxotrophic life-
style (Kim et al. 2019). This means that this group
lacks the full molecular apparatus to degrade certain
organic compounds required for survival. Instead,
they exploit available nutrients in the environment,
thereby reducing energy expenditure and increasing
metabolic efficiency and reproductive rates (Chiriac
et al. 2022). Despite being still poorly understood and
just recently being successfully maintained in labora-
tory cultures (Kim et al. 2019), these organisms are
largely found in freshwater environments (Glockner
et al. 2000) and generally represent more than half of
16S rRNA gene amplicon sequences (Mateus-Barros
et al. 2019). In contrast, the rarer organisms belonged
primarily to the Patescibacteria, a group largely char-
acterized by an endosymbiont lifestyle (Castelle et al.
2018) and a consequent dependence on their hosts’
dispersal capacity to colonize new sites.

Additionally, the variation partitioning analysis
revealed a large portion of unexplained variation, and
the complementary analysis of B-nearest taxon index
has confirmed that, for the majority of site pairs, the
observed dissimilarity may be explained by stochas-
tic processes. This phenomenon could be attributed
to two main factors, acting independently or in com-
bination. First, it is possible that some crucial vari-
ables influencing the metacommunity structure were
not captured. Some temporally structured environ-
mental factors (Langenheder et al. 2012) may impact
a region in ways that are more difficult to measure.
Additionally, factors operating at larger scales, such
as disturbances (Vellend et al. 2014) and prior-
ity effects (Siqueira et al. 2015), may be playing a
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significant role. Predation pressure (Livingston et al.
2017; Segovia et al. 2018) and viral lysis (Maurice
et al. 2011) can also affect community structure and
were not measured in this study. Furthermore, the
mass flow of individuals from surrounding soils,
which occurs when water flows towards the riverbed,
is more common in headwater environments (Ruiz-
Gonzalez et al. 2015; Griffero et al. 2024) and could
contribute to unexplained variance in the absence of
disturbances over time. Second, this unexplained var-
iation may be an inherent characteristic of the region,
with neutral processes potentially driving community
dynamics (Melo et al. 2012). This phenomenon has
been previously observed in the same region for other
organisms, suggesting that it may lead to increased
local variability and reduced regional synchrony
(Lopes et al. 2017; Zanon et al. 2018).

In our study, we successfully identified vari-
ous dispersal mechanisms that may impact bacterial
community composition. The dbMEM approach,
commonly used in studies of this nature (e.g. Som-
maruga and Casamayor 2009; Fillinger et al. 2019),
effectively captured spatial variables that explained
variations in dominant taxa across the landscape.
Although concerns have been raised about the accu-
racy of this approach in determining the roles of spa-
tial factors in metacommunity structuring (Gilbert
and Bennett 2010), it has been demonstrated that
spatial autocorrelation can be effectively addressed
through appropriate correction methods (Bauman
et al. 2018). This approach highlighted the unex-
pected potential role of spatially related selective
pressures on these organisms. Conversely, the MEM
approach provided insights into neighborhood and
region aspects, which better explained variations in
bacteria that were rarer and more susceptible to a cer-
tain degree of geographic isolation. This underscores
the importance of employing multiple approaches to
capture all geographic factors influencing metacom-
munity structure. Evidence suggesting that geography
plays a role in bacterial distribution is growing (e.g.
Stegen et al. 2013, Lindh 2017, Lansac-T6ha et al.
2020, Logares et al. 2020, Mateus-Barros et al. 2021).
However, further studies covering large geographical
scales, using comparable methods, and encompassing
at least 700 km of overland distance between sam-
pling sites are necessary. This emphasizes the need
for continental-scale sampling programs that apply
standardized protocols to comprehensively unravel
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the complex geographic mechanisms shaping bacte-
rial metacommunities.
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