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best explanation for bacterioplankton β-diversity, 
likely reflecting the dominance of ubiquitous, highly 
abundant bacteria. In contrast, rarer bacteria were 
associated with local neighborhoods, suggesting 
lower dispersal capacities. This pattern aligns with 
observations in other taxa and indicates a potential 
rescue effect. Moreover, regardless of abundance, 
most bacteria appear to occupy a geographic range of 
600–700 km. Our results suggest that while determin-
istic factors play a critical role in shaping freshwater 
bacterial biodiversity, the spatial context also con-
tributes to explaining bacterioplankton dissimilarity 
and community dynamics. Importantly, selecting the 
appropriate spatial metric—whether based on pres-
ence/absence or abundance data—is crucial for accu-
rately capturing these patterns.

Keywords  Variation partitioning · β-diversity 
partition · Spatial dynamics · 16S amplicon 
sequencing

Introduction

Freshwater bacteria are part of the key organisms for 
ecosystem functioning, playing essential roles in bio-
geochemical cycles and maintaining close relation-
ships with other living organisms, including those that 
influence human health (Newton et al. 2011; Chiriac 
et  al. 2022). Consequently, the relationship between 
microbial community structure and environmental 

Abstract  Understanding how spatial factors shape 
species distribution and geographic range remains 
a central question in community ecology, particu-
larly for microorganisms with high dispersal capaci-
ties. Here, we applied variation partitioning to assess 
the impact of multiple spatial mechanisms on the 
β-diversity of a bacterioplankton metacommunity in 
60 shallow lakes distributed across a broad landscape. 
Linear overland distances between sites provided the 
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variation at local scales has been extensively studied 
over the decades. These studies consistently highlight 
factors such as pH, salinity, and temperature as pri-
mary drivers of microbial biodiversity across diverse 
contexts (Lindström et  al. 2005; Zhang et  al. 2021). 
However, the longstanding idea that their high dis-
persal capacity means spatial factors do not influence 
their biodiversity, and that this biodiversity is solely 
determined by local environmental conditions—i.e. 
everything is everywhere, but the environment selects 
(Baas Becking 1934)—has been challenged by recent 
advances in DNA sequencing and bioinformatics.

These advances have revealed that microbial bio-
diversity is significantly higher than previously esti-
mated (Rappé and Giovannoni 2003; Callahan et  al. 
2016). This finding stems from the discovery of very 
low-abundance and narrow-range taxa within micro-
bial communities, often referred to as the “rare bio-
sphere” (Pedrós-Alió 2012). The identification of this 
rare biosphere has significant implications on how 
we interpret spatial features of biodiversity, as these 
organisms may respond differently to geographic dis-
tances (Mateus-Barros et al. 2021) or environmental 
heterogeneity (Huber et al. 2020) compared to more 
abundant and widely distributed microbes. Neverthe-
less, the relationship between microbial dynamics and 
spatial features remains unclear. For instance, recent 
studies analysing bacterial dissimilarity from distinct 
perspectives have reported conflicting results, likely 
due to the use of different methodologies. Some stud-
ies comparing the influence of organism size on spa-
tial features of biodiversity have demonstrated a sig-
nificantly higher impact of stochastic processes on 
microbial communities (Farjalla et al. 2012; Soininen 
et  al. 2013). In contrast, other studies that focused 
solely on microorganisms have emphasized the 
greater relative importance of environmental filter-
ing (Jyrkänkallio-Mikkola et al. 2017; Fillinger et al. 
2019). Therefore, understanding how these organ-
isms organize in space, and identifying mechanisms 
beyond environmental filtering that influence their 
distribution, could reveal critical insights into micro-
bial ecology.

In this sense, study of the relative role of local 
and regional processes in shaping spatial community 
properties has received growing attention over the 
past few decades (e.g. Ricklefs and Jenkins 2011). 
Within this context, the concept of a metacommunity 
has emerged as a powerful ecological framework. It 

posits that a group of local communities are inter-
connected through the dispersal of multiple species, 
which may potentially interact with each other (Wil-
son 1992; Leibold et  al. 2004). A well-established 
and straightforward way to identify the processes 
influencing metacommunity structure is by measuring 
the observed dissimilarity in community composition 
between pairs of local communities (Whittaker 1960, 
1972). This dissimilarity is a diversity dimension 
known as β-diversity.

Multiple approaches have been proposed to assess 
and interpret patterns of β-diversity. These can be 
broadly categorized into qualitative and quantita-
tive methods (Anderson et  al. 2011). Qualitative 
approaches rely on species presence/absence data, 
which are more commonly available and can also be 
derived from other types of data, thereby facilitating 
access to larger datasets and insights into composi-
tional variation. In contrast, quantitative approaches 
incorporate (relative) abundance, which are cru-
cial for understanding the mechanisms that shape 
metacommunity structure (Anderson et  al. 2011). 
β-diversity can be influenced by a range of intrinsic 
and extrinsic factors, including historical contin-
gency, trophic level, variability in local factors and 
interactions, as well as the type of environment inhab-
ited (Baselga et  al. 2011). Geography also plays a 
critical role, both directly and indirectly, by altering 
environmental heterogeneity and affecting the disper-
sal opportunities of each species (Martiny et al. 2011; 
Soininen et al. 2018). This process varies across spa-
tial scales (Vellend 2010; Baselga et al. 2011) and is 
not necessarily dependent on specific dispersal abili-
ties (Gaston 2009).

In freshwater microbial communities, large-scale 
dispersal appears to be related to both specific life-
styles and ecological context (Huber et  al. 2020; 
Ruiz-González et  al. 2015). While some of these 
organisms are commonly attached to the particles 
they degrade to feed on, others are found moving in 
the water column, feeding on smaller, less complex 
particles available there or synthesizing nutrients 
from sunlight (Chiriac et  al. 2022). Thus, because 
they are free in the water column, organisms of this 
second group can be more easily transported to other 
sites. Moreover, the composition of microbial spe-
cies can differ significantly depending on the region 
where a community is found. For example, headwa-
ter communities are compositionally more similar to 
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the surrounding soil communities than to those at the 
mouth of the same river (Ruiz-González et al. 2015). 
In addition, even when comparing communities in 
more similar contexts, such as two sites in a flood-
plain, the degree of connectivity between study sites 
directly affects the observed β-diversity (Huber et al. 
2020). Finally, long-distance dispersal does not seem 
to be governed by a single event, but rather by small-
scale dispersal events over short distances, with a 
linear increase in the area reached by a species (Hoe-
tzinger et al. 2024), in a pattern likely guided by the 
local abundance reached by each bacterium (Mateus-
Barros et al. 2021). Furthermore, research has shown 
that species sorting is more pronounced among the 
most widespread bacteria (Székely and Langenheder 
2014), and that these taxa tend to have higher specia-
tion rates (Sriswasdi et al. 2017), which can be cap-
tured at the amplicon sequence variant (ASV) level. 
Notably, the geographic range of freshwater bacteria 
remains largely unknown due to a lack of comparable 
studies conducted on a sufficiently large scale (but see 
Hoetzinger et al. 2024).

Bacteria are passive dispersers, which means 
that their movement across aquatic environments is 
driven not only by water flows (Lansac‐Tôha et  al. 
2020, Sadeghi et  al. 2024), but also by attachment 
to larger organisms (Grossart et  al. 2010) and wind 
(Smith et al. 2013). In this context, some theoretical 
approaches can be used to determine the main way 
dispersal impacts bacterial β-diversity. If only ‘the 
environment selects’ as stated for many decades, the 
geography will only reflect the spatial structure of 
environmental factors (Borcard et  al. 1992). On the 
contrary, considering the possibility of a sufficient 
homogeneous distribution of deterministic factors, 
the β-diversity will decrease as a function of increas-
ing geographical distance (Dray et  al. 2006). Other 
possibilities are a stronger connection by shorter 
distances reflecting the low dispersive capacity of 
the large number of rare bacteria in this data (Peres-
Neto and Legendre 2010), the isolation generated by 
distinct drainage basins that make up this landscape 
which should be reflected by an increased similarity 
between sites located in the same watershed, and a 
connection between sites proportioned by river flow 
(Blanchet et  al. 2008a, b). In light of these disper-
sal mechanisms, distinct theoretical approaches can 
help us understand how dispersal influences bacterial 
β-diversity.

In this study, we aimed to investigate the influence 
of environmental and spatial mechanisms on bacte-
rial occupancy within a tropical bacterioplankton 
metacommunity. To reach this objective, we recov-
ered the most important environmental factors and 
used different dispersal models to address the rela-
tive importance of these aspects to the structure of 
a bacterioplanktonic metacommunity across a set of 
60 tropical shallow lakes scattered over a matrix of 
nearly 250,000  km2. Beyond environmental factors, 
we sought to determine the extent of bacterial ASV 
occupancy by integrating spatial components from 
the metacommunity theoretical framework. Specifi-
cally, we aimed to elucidate the impact of dispersal 
mechanisms, including river flow (Fig. 1A), overland 
distances (Fig.  1B), neighborhood effects (Fig.  1C), 
and geographical barriers (Fig.  1D), on bacterial 
β-diversity and the size of geographic range. By 
adopting a comprehensive set of qualitative and quan-
titative methods, we sought to identify the relative 
importance among geographic mechanisms affecting 
bacterioplankton metacommunity patterns. In doing 
so, we aspire to address the fundamental question of 
how far bacteria can establish, thereby advancing our 
understanding of spatially related local and regional 
processes in microbial metacommunities.

Methods

Study design

This study was performed using a dataset obtained 
from 60 headwater shallow lakes covering a region 
of nearly 250,000  km2 in São Paulo state, southeast 
Brazil (Fig.  1). This region has a tropical climate 
and is characterized by Cerrado (Brazilian savannah) 
and Atlantic Forest (semi-deciduous humid forest). 
Located in a region of intense agricultural activity, 
these lakes are generally small reservoirs, dammed 
to fulfill water needs of landowners. The study area 
lies within three sub-basins of the Paraná River basin 
(i.e. Grande, Paranapanema, and Tietê rivers) and the 
coastal formation, which rises rapidly from sea level 
to over 1000 m before descending toward the conti-
nent’s interior. In line with other findings, the tropi-
cal climate prevents microbial community dynamics 
from being mainly driven by temperature dynam-
ics (Fig.  S1A, C). Also, possibly due to the intense 
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human activities, precipitation variation also appears 
not to affect these community dynamics (Fig.  S1B, 
D), instead, they are more likely to respond to vari-
ation in pH and organic compounds (Mateus-Barros 
et al. 2021). Sampling was carried out between June 
2012 and July 2016. To minimize bias, samples were 
selected at equidistant intervals (when possible), to 
create a homogeneous grid across the area (Fig.  1) 
that encompassed all geographical contexts assess-
able in this study.

In the field, we measured environmental vari-
ables (temperature, conductivity, pH) using a multi-
parameter probe (YSI, Yellow Springs, USA) and 
filtered sub-surface water for laboratory analyses 
(nutrients, carbon supply, chlorophyll-a, envi-
ronmental DNA). Altitude and geographic coor-
dinates were obtained using a GPS. Samples for 

nutrient analysis were obtained by filtering lake 
water through 0.45  μm polycarbonate membranes 
previously washed with ultrapure water to prevent 
carbon contamination from the filter, and stored in 
amber bottles in a freezer at − 20  °C until analy-
sis. Dissolved organic carbon (DOC) was meas-
ured using a TOC-V (Shimadzu®, Kyoto, Japan). 
Dissolved nutrient concentrations were determined 
using a Ion Chromatography System (Thermo Sci-
entific®, Waltham, Massachusetts, USA), and dis-
solved inorganic nitrogen (DIN) was calculated by 
adding the values obtained from nitrite, nitrate, and 
ammonium. Additionally, a FS5 Spectrofluorometer 
(Edinburgh Instruments®, Livingston, UK) was 
used to estimate the Tryptophan-like fluorescent 
dissolved organic matter (T-FDOM), calculated 
as the ratio between the fluorescence of dissolved 

Fig. 1   Location of the sixty headwater shallow lakes that were 
sampled over a large tropical landscape covering four distinct 
hydrological basins. The main rivers (blue lines) and basin 
delimitations (black dashed lines) were also indicated. The 
large zoomed figures illustrate how each spatial aspect was 
considered for the variation partitioning: A distance between 
local communities through river flow, the connectivity frac-
tion; B spatial overland distance between local communities, 

the spatial fraction; C isolation between local communities 
caused by geographical barriers, the region fraction; and D 
increased connectivity to neighboring sites, the neighborhood 
fraction. The line thickness in the examples represents hypo-
thetical connectivity strength (flow of individuals) between the 
pairs of sites under the four dispersal possibilities described 
above
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organic matter fluorescence and that of quinine 
sulfate (0.001  mg/L dissolved in 0.1  M H2SO4) at 
455  nm excitation and 355  nm emission. Chloro-
phyll-a concentration (used as a proxy for trophic 
state) was obtained by filtering 100–500  ml of 
water through a glass fibre filter (Macherey–Nagel® 
GF-6), extracting with ethanol (90% v/v at 80  °C) 
in the dark (Marker 1980; Mush 1980), and quanti-
fying by spectrophotometry (Lorenzen 1967). This 
dataset includes equal sample sizes across trophic 
state categories (oligotrophic, mesotrophic, and 
eutrophic) and hydrologic basins. More details on 
the study site and environmental variable analyses 
can be found in Mateus-Barros et al. (2021).

Sampling, sequencing, and bioinformatics

To analyse microbial community composition and 
diversity, 500  ml of surface water were pre-filtered 
through a glass-fiber filter of 1.2 μm mesh (BOECO® 
MGC) to retain eukaryotes, large particles, and 
attached prokaryotes. Afterwards, 200–500  ml of 
filtrate were passed through 0.2  μm polycarbonate 
membranes (Millipore® Isopore™ 0.2 μm GTBP) to 
retain free-living prokaryotes.

Free-living bacterial DNA was extracted using a 
phenol–chloroform extraction protocol. The ampli-
fication was performed with the 341F (5′-CCT​ACG​
GGNGGC​WGC​AG-3′) and 805R (5′-GAC​TAC​
HVGGG​TAT​CTA​ATC​C-3′) primers (Herlemann 
et al. 2011). Following amplification, fragments were 
sequenced using the Illumina MiSeq 2 × 250 paired-
end reads. A full description of the molecular analy-
ses can be found in Mateus-Barros et al. (2019). Raw 
sequences were processed using the DADA2 pipeline 
(Callahan et  al. 2016) implemented in the R envi-
ronment (R Core Team 2019) to generate a table of 
Amplicon Sequence Variants (ASVs). Taxonomic 
identification was assigned by blasting against the 
SILVA database version 132 (Yilmaz et al. 2014). The 
initial ASV table was filtered to remove sequences 
assigned to the Archaea domain, mitochondria, and 
chloroplasts and was normalized to equal sampling 
depth to create a subsampled ASV table  (14,239 
reads); finally, ASVs with a total abundance of fewer 
than 10 reads were removed. Rarefaction curves from 
these samples, after rarefaction and filtering of low-
abundance ASVs, can be seen in Figure S2.

Data analyses

To determine the roles of species’ presence and abun-
dance in the ecological aspects investigated here, the 
first step was to transform the ASVs table into two 
separate tables: (1) a quantitative data table with rela-
tive abundance, which was used to perform analyses 
based on Bray–Curtis distances, and (2) a qualita-
tive data table using ASV presence/absence at each 
site, used for analyses based on Jaccard distances. 
The comparison between qualitative and quantitative 
approaches should be interpreted with caution. This 
is because the sequences read by NGS equipment are 
limited by their maximum sequencing capacity and 
never capture the complete number of reads present 
in a sample. As a result, the data have a composi-
tional nature (Gloor et al. 2017) and should always be 
treated as relative rather than absolute. In any case, 
the variation in ASV occurrence across sites is valu-
able for interpreting ecological processes. All forth-
coming analyses (see below) were performed using 
both quantitative and qualitative data matrices.

To assess the role of local environmental and 
regional geographic features on the β-diversity 
observed in the bacterial metacommunity described 
above, we applied variation partitioning (Bor-
card et  al. 1992) approach to dissimilarity matrices 
obtained from the beta.pair and beta.pair.abund 
functions of the betapart package (Baselga 2010; 
Baselga and Freckleton 2013). A distance-based 
redundancy analysis (dbRDA) was used to identify 
the factors employed in the variation partitioning 
(Legendre and Anderson 1999). Variation partition-
ing is a well-established approach used to determine 
the relative importance of different biotic and abiotic 
factors in shaping observed β-diversity in a given 
metacommunity.

To identify the dispersal features applied to 
variation partitioning, we used a set of eigenvec-
tor analyses. First, to test the potential connections 
between sites (Fig. 2A), we employed an Asymmet-
ric Eigenvector Map (AEM) model. This model is 
calculated using a weight matrix that assigns “1” to 
river edges connecting two site pairs, while “0” is 
assigned to edges not connecting these sites (Blan-
chet et al. 2008a, b). The resulting eigenvector matrix 
was referred to as the connectivity fraction. Second, 
the linear decay of similarity was calculated using a 
distance-based Moran Eigenvector Map (dbMEM) 
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approach to produce eigenvectors based on overland 
distances between sites (Dray et  al. 2006), thereby 
recovering the space fraction (Fig.  2B). Third, the 
neighborhood fraction (Fig. 2C) was estimated using 
a MEM analysis (Peres-Neto and Legendre 2010) 
complemented by the weight formula 1 − x/max(geo). 
Unlike the space fraction, this weight formula modi-
fies the connection/distance relationship to a bino-
mial-like shape, increasing the importance of shorter-
distance connections. Finally, to assess the isolation 
created by drainage basins and obtain the region 
fraction (Fig. 2D), we used a MEM approach, deter-
mining the weight matrix by assigning “1” to site 
pairs located within the same basin and “0” to pairs 

in different regions. All eigenvectors were generated 
using the adespatial package (Dray et al. 2020).

Following these computations, all matrices under-
went ordination with 999 permutations to select the 
most relevant eigenvectors. To mitigate issues related 
to spatial autocorrelation, we applied the R2 ordina-
tion approach (Blanchet et al. 2008a, b; Bauman et al. 
2018). This approach calculates an R2 before adding 
each eigenvector to the ordination and terminates the 
analysis when the value reaches the R2 for the global 
analysis, even if some significant eigenvector remain 
to be added (Fig.  3 shows all eigenvectors recov-
ered). The ordination test was performed using the 
ordiR2step function of the vegan package (Oksanen 

Fig. 2   Fluxogram showing all steps performed in the analy-
sis of variation partitioning of β-diversity between spatial and 
environmental factors. The geolocation of each site was used 
to create distinct eigenvectors that model distinct geographic 
factors that may be impacting the metacommunity: river con-
nectivity (A), overland spatial distances (B), neighborhood 
distances (C) and regional isolation (D), these matrices were 
filtered to the selection of relevant factors and quality check 

before composing the geographic fractions (E). The standard-
ized environmental factors also passed through the relevance 
and quality checks before composing the environment fraction 
(F). By comparing these factors with qualitative and quantita-
tive dissimilarity matrices (G), the variation partitioning (H) 
was performed based on a dbRDA. Finally, a CCA was used to 
test for significance (I)
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et al. 2016). The eigenvectors derived from the con-
nectivity were not significantly correlated with the 
biological data (p > 0.05) and were excluded from the 
subsequent analyses. For the environment fraction 
(Fig. 2G), environmental variables were standardized 
(except pH), and forward selection was applied to 
identify the relevant components.

The remaining variables (Fig.  2E, F) were com-
pared to both quantitative and qualitative dissimilar-
ity matrices (Fig.  2G) through variation partitioning 
(Fig.  2H) (Borcard et  al. 1992). Finally, a canonical 
correspondence analysis (CCA) (Fig.  2I) was con-
ducted to determine the significance of each fraction. 
All analyses were conducted at the R environment (R 
Core Team 2019). To complement the variation parti-
tioning and evaluate whether β-diversity was mainly 
driven by stochastic or deterministic processes, we 
applied the β-nearest taxon index following Stegen 
et  al. (2013). Phylogenetic dissimilarities among 
samples were compared to a null model based on 
this metacommunity species pool. Values equal to or 
greater than ± 2 were interpreted as deviating signifi-
cantly from the null expectation and, further, being 

primarily guided by deterministic processes, whereas 
values not significantly deviating from the null expec-
tation were considered to be predominantly driven by 
stochastic processes.

To further understand the role of increasing dis-
tances on the spatial fractions recovered, we calcu-
lated the maximum distance reached by each ASV to 
establish nine distinct dispersal thresholds, ranging 
from shorter distances (0–100  km) to the maximum 
distances reached in this landscape (800–900  km). 
These thresholds were then used to group the ASVs 
by their frequencies and relative abundances. Also, 
ASVs classified in clades previously recognized for 
their regional abundance and/or involvement in rapid 
and uncontrolled growth events (i.e. blooms) were 
grouped. Finally, differences in abundance for each 
grouped clade at each threshold of maximum distance 
were assessed using Kruskal-Wallis and Dunn’s tests 
to evaluate significant differences.

The raw sequence data used in this study are 
deposited in the NCBI repository under accession 
number PRJNA411849, and are part of a continental 
effort led by the Collaborative Network on Microbial 

Fig. 3   All eigenvectors recovered after the ordination step. 
Black and white boxes indicate site groupings from each 
model. Only the structures that significantly match the 
observed microbial dissimilarity are displayed here. For the 
qualitative approach, the significant eigenvectors were MEM5, 

MEM22 (space fraction), MEM15, MEM17 (neigborhood 
fraction) and MEM4 (region fraction), while for the quanti-
tative approach the significant ones were MEM13, MEM23 
(space fraction), MEM11, MEM15 (neigborhood fraction) and 
MEM4 (region fraction)
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Aquatic Ecology in Latin America (µSudAqua). More 
details can be found in Metz et al. (2022).

Results

After rarefaction and filtering, a total of 3,738 
ASVs classified within 22 phyla were obtained from 
815,560 reads. In terms of richness, the three most 
represented among the ASVs were Proteobacteria 
(30% of the total), Actinobacteriota (26.64%), and 
Patescibacteria (20.47%). When considering the 
quantitative number of affiliated reads, the top three 
phyla were Actinobacteriota (54.20%), Proteobacte-
ria (24.37%), and Verrucomicrobiota (5.60%).

Before variation partitioning, the ordination of 
significant environmental variables showed that, for 
the qualitative dataset (0.084 adj. R2) β-diversity was 
related to pH (0.021 adj. R2; p = 0.002), DOC (0.020 
adj. R2; p = 0.002), altitude (0.014 adj. R2; p = 0.016), 
T-FDOM (0.014 adj. R2; p = 0.016), and DIN (0.008 
adj. R2; p = 0.04), while for the quantitative dataset 
(0.131 adj. R2) β-diversity was related to pH (0.042 
adj. R2; p = 0.002), DIC (0.019 adj. R2; p = 0.006), 
and altitude (0.018 adj. R2; p = 0.016). These varia-
bles were then selected, and the other tested variables 
(temperature, conductivity, and chlorophyll-a) were 
excluded from subsequent analyses. All selected vari-
ables showed substantial variation among the sites 
analyzed here (Table 1).

In the variation partitioning analysis (Fig.  4), all 
comparisons indicated significant overall correlations. 
The environment was the best predictor of β-diversity. 
For the qualitative approach the environment con-
tributed alone with ~ 6% of observed β-diversity, 
while geography reached ~ 1.5%. For the quantitative 

approach, environment remained to explain ~ 6%, 
while geography reached ~ 3.7%. In this analysis, the 
interaction between environment and geography also 
showed important values, reaching 3.3 and 1.9% for 
qualitative and quantitative approaches, respectively. 
Finally, the geographic partitioning indicated that, for 
both qualitative and quantitative approaches, neigh-
borhood, space, and region, in this order, explained 
the geographic role on observed β-diversity. How-
ever, it is important to note that the unexplained frac-
tion consistently accounted for a substantial portion 
of the variance. The β-Nearest Taxon Index showed 
that 60.05% of the observed dissimilarities were pre-
dominantly explained by stochastic factors, while the 
remaining 39.95% were explained by deterministic 
ones (Fig. S3).

The frequency distribution of maximum overland 
distances covered by each ASV (Fig.  5) followed a 
bimodal-like shape, with one group of organisms 
capable of dispersing shorter distances and another 
group able to disperse across nearly the entire land-
scape. This bimodal distribution aligns with the rela-
tive abundance of each ASV, as bacteria that are more 
abundant also tend to disperse over greater distances. 
However, this pattern does not correspond to the fre-
quency of overland distances between sites within 
this landscape, which follows a normal-like distribu-
tion. Regardless of abundance, most freshwater bac-
terial ASVs had a distribution range of 600–700 km.

When examining these ASVs based on the maxi-
mum distances they can reach (Fig.  6), we observe 
a shift occurring beyond the 600–700 km threshold. 
Bacterial taxa that surpass this range differ from 
those restricted to shorter distances. Within the 
Actinobacteriota phylum, the hgcI clade becomes 
increasingly prominent at greater distances (p < 0.05), 

Table 1   Average and range 
of tested environmental 
parameters in the 60 
tropical shallow lakes

Asterisks (*) indicate the 
parameters selected after 
ordination for the variation 
partitioning analysis

Average Standard Deviation Minimum Maximum

Altitude (m)* 504.83 ± 230.03 7 1121
pH* 6.76 ± 1.02 4.79 10.1
Conductivity (µS/cm) 62.13 ± 79.53 0 470
Chlorophyll-a (mg/L) 16.62 ± 25.13 0.092 105.19
Temperature (°C) 23.16 ± 4.06 15.04 31.41
DOC (mg/L)* 8.8 ± 7.99 1.27 42.06
DIC (mg/L)* 4.79 ± 3.06 0.79 13.28
DIN (mg/L)* 1.27 ± 5.89 0.01 45.7
T-FDOM* 1.89 ± 1.27 0.38 6.32
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Fig. 4   Variation partitioning of bacterioplankton β-diversity 
for A qualitative and B quantitative data. Geographic factors 
are decoupled into spatial overland distance between sites (spa-
tial fraction), increased connectivity to neighbor sites (neigh-

borhood fraction) and the isolation promoted by geographical 
barriers (region fraction). The isolated circles show the non-
explained fraction for each analysis

Fig. 5   Threshold of maxi-
mum overland distances 
achieved in this landscape. 
A The distances between 
sites showed a normal-like 
distribution frequency, 
while B the bacterioplank-
ton had a bimodal distribu-
tion on their maximum 
distances reached. C The 
organisms capable of reach-
ing the maximum distances 
in this landscape were also 
those with a greater mean 
relative abundance. This 
data was normalized by the 
sqrt function to improve 
visualization
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not only showing the highest number of representa-
tives but also displaying a rise in relative abundance 
as dispersal distances increase. In contrast, bacteria 
belonging to Patescibacteria tend to decrease in rep-
resentation as the maximum distance between sites 
increases (p < 0.05). The Proteobacteria, another 

group with a substantial number of representatives, 
maintains a relatively constant presence across this 
spatial spectrum. However, the relative abundance of 
Proteobacteria decreases with increasing spatial scale 
(Rhizobiales, P < 0.05; other_Alphaproteobacteria, 
P < 0.05; Limnohabitans, P < 0.05; Polynucleobacter, 

Fig. 6   The distribution of ASV representatives (A) and their 
mean relative abundance (B) by the thresholds of maximum 
distances reached. Clades previously recognized for their 

regional abundance and/or involvement in rapid and uncon-
trolled growth events (i.e. blooms) were highlighted
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P < 0.05; other Gammaproteobacteria, P < 0.05; other 
Proteobacteria, P < 0.05), except for the Rhizobi-
ales family, which exhibits an increase in both the 
number of representatives and relative abundance at 
larger maximum distances. Other relevant taxonomic 
groups, such as Cyanobacteria (Cyanobium, P < 0.05; 
other Cyanobacteria, P = 0.117), Verrucomicrobi-
ota (FuKuN18, P = 0.1036; other Verrucomicrobia, 
P < 0.05), and Planctomycetes (p < 0.05), show a 
more consistent representation across this spatial gra-
dient. For a detailed description of the global signifi-
cance and pairwise comparisons across each thresh-
old of distances, for each clade highlighted here, see 
Table S1.

Discussion

In recent decades, the development of tools such as 
powerful computers, molecular and sensing tech-
niques, and the facilitation of data dissemination via 
the internet, has contributed to a shift in dominant 
paradigms in ecology (Chave 2013). It has become 
increasingly evident that addressing certain funda-
mental questions requires exploring other scales to 
understand the drivers of observed patterns (Levin 
1992). In this study, we used a large dataset of fresh-
water bacterial biodiversity aimed at applying some 
conceptual frameworks to disentangle how differ-
ent geographical factors can affect bacterioplankton 
β-diversity in a lake metacommunity.

To achieve this objective, we applied various mod-
els designed to assess the influence of different poten-
tial dispersal routes using variation partitioning (e.g. 
Dray et al. 2006; Blanchet et al. 2008a, b; Peres-Neto 
and Legendre 2010). We found that the environment 
is the best predictor of bacterioplankton β-diversity 
in shallow lake metacommunities, although spatial 
factors also play a role, mainly for bacteria that are 
not capable of overcoming long distances. The impor-
tance of each factor followed a hierarchy in which 
β-diversity was primarily related to the environmental 
fraction, and afterwards by dispersion, as evidenced 
by distinct geographic features. This pattern was con-
sistent across several tested factors and approaches, a 
result that was not previously expected, and reflects 
the high dispersal capacity of dominant bacteria that 
are able to overcome large distances and geographic 
barriers (Lansac‐Tôha et al. 2020). However, we also 

identified a group of rare and less dispersed organ-
isms that are mainly influenced by spatial features, as 
evidenced by Figs. 5 and 6. The role of the environ-
ment as the main driver of β-diversity is a common 
pattern described in the literature (e.g. Beisner et al. 
2006; Winter et al. 2013; Jyrkänkallio-Mikkola et al. 
2017; Fillinger et  al. 2019; Porcel et  al. 2025). This 
is especially attributed to pH, a well-known selec-
tive factor for aquatic bacteria (Lindström et al. 2005; 
Niño-García et al. 2016; Griffero et al. 2024; Porcel 
et al. 2025), which has previously been shown to be a 
key factor in these sites (Mateus-Barros et al. 2021). 
Here, we focused on refining the spatial analyses as 
much as possible, aiming to encompass all relevant 
dispersal routes that bacterioplankton can take. To 
achieve this objective, we applied different models 
that have been proposed to assess the role of geog-
raphy through variation partitioning (e.g. Dray et al. 
2006; Blanchet et al. 2008a, b; Peres-Neto and Leg-
endre 2010). Despite some concerns regarding the 
accuracy of this approach for determining the role 
of environmental and spatial factors on metacom-
munity structuring (Gilbert and Bennett 2010), it has 
been demonstrated that spatial autocorrelation can be 
addressed through an appropriate correction (Bauman 
et al. 2018).

Our findings indicate that the most effective geo-
graphic predictor of bacterioplankton β-diversity in 
shallow lake metacommunities is the overland dis-
tance between sites (spatial fraction) in combination 
with the other measured fractions, with most bacte-
rial ASVs having a distribution range of 600–700 km, 
and the most abundant ones presenting an even higher 
dispersion, reaching the maximum possible distance 
for this dataset (800–900  km). This pattern likely 
reflects the high dispersal capacity of dominant bac-
teria, allowing them to overcome large distances and 
geographic barriers (Lansac‐Tôha et al. 2020). How-
ever, we also identified a set of rare and less dispersed 
organisms that are more consistently associated with 
the Neighborhood feature, suggesting a lower disper-
sal capacity of these organisms compared to the more 
abundant ones. This feature demonstrates that these 
organisms should not be solely guided by local envi-
ronmental factors as long has been stated (Baas Beck-
ing 1934), instead, it seems to present spatial dynam-
ics similar to what is largely observed in groups that 
disperse actively, like birds and mammals (Brown 
1984; Matthysen 2005). This pattern indicates that 
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bacteria can present a density-dependent dispersal 
(Matthysen 2005), which is consistent with the res-
cue effect hypothesis (Gotelli 1991), where a given 
area with a larger population of a species serves as 
a dispersal source, and their distribution range tends 
to correlate with the maximum local abundance they 
achieve (Brown 1984). This implies that organisms 
with greater adaptive capabilities tend to become 
more abundant and eventually dominate the land-
scape (Gaston et al. 2000). In contrast, rare organisms 
typically exhibit a clustered distribution and have lim-
ited dispersal capacities (Ruiz-González et  al. 2015; 
Niño-García et al. 2016).

In this landscape, the dominant organisms were 
classified within the hgcI clade. It is a group of 
Actinobacteriota known for having a streamlined 
genome (Chiriac et al. 2022) and an auxotrophic life-
style (Kim et  al. 2019). This means that this group 
lacks the full molecular apparatus to degrade certain 
organic compounds required for survival. Instead, 
they exploit available nutrients in the environment, 
thereby reducing energy expenditure and increasing 
metabolic efficiency and reproductive rates (Chiriac 
et al. 2022). Despite being still poorly understood and 
just recently being successfully maintained in labora-
tory cultures (Kim et  al. 2019), these organisms are 
largely found in freshwater environments (Glöckner 
et al. 2000) and generally represent more than half of 
16S rRNA gene amplicon sequences (Mateus-Barros 
et al. 2019). In contrast, the rarer organisms belonged 
primarily to the Patescibacteria, a group largely char-
acterized by an endosymbiont lifestyle (Castelle et al. 
2018) and a consequent dependence on their hosts’ 
dispersal capacity to colonize new sites.

Additionally, the variation partitioning analysis 
revealed a large portion of unexplained variation, and 
the complementary analysis of β-nearest taxon index 
has confirmed that, for the majority of site pairs, the 
observed dissimilarity may be explained by stochas-
tic processes. This phenomenon could be attributed 
to two main factors, acting independently or in com-
bination. First, it is possible that some crucial vari-
ables influencing the metacommunity structure were 
not captured. Some temporally structured environ-
mental factors (Langenheder et al. 2012) may impact 
a region in ways that are more difficult to measure. 
Additionally, factors operating at larger scales, such 
as disturbances (Vellend et  al. 2014) and prior-
ity effects (Siqueira et  al. 2015), may be playing a 

significant role. Predation pressure (Livingston et al. 
2017; Segovia et  al. 2018) and viral lysis (Maurice 
et al. 2011) can also affect community structure and 
were not measured in this study. Furthermore, the 
mass flow of individuals from surrounding soils, 
which occurs when water flows towards the riverbed, 
is more common in headwater environments (Ruiz-
González et al. 2015; Griffero et al. 2024) and could 
contribute to unexplained variance in the absence of 
disturbances over time. Second, this unexplained var-
iation may be an inherent characteristic of the region, 
with neutral processes potentially driving community 
dynamics (Melo et  al. 2012). This phenomenon has 
been previously observed in the same region for other 
organisms, suggesting that it may lead to increased 
local variability and reduced regional synchrony 
(Lopes et al. 2017; Zanon et al. 2018).

In our study, we successfully identified vari-
ous dispersal mechanisms that may impact bacterial 
community composition. The dbMEM approach, 
commonly used in studies of this nature (e.g. Som-
maruga and Casamayor 2009; Fillinger et  al. 2019), 
effectively captured spatial variables that explained 
variations in dominant taxa across the landscape. 
Although concerns have been raised about the accu-
racy of this approach in determining the roles of spa-
tial factors in metacommunity structuring (Gilbert 
and Bennett 2010), it has been demonstrated that 
spatial autocorrelation can be effectively addressed 
through appropriate correction methods (Bauman 
et  al. 2018). This approach highlighted the unex-
pected potential role of spatially related selective 
pressures on these organisms. Conversely, the MEM 
approach provided insights into neighborhood and 
region aspects, which better explained variations in 
bacteria that were rarer and more susceptible to a cer-
tain degree of geographic isolation. This underscores 
the importance of employing multiple approaches to 
capture all geographic factors influencing metacom-
munity structure. Evidence suggesting that geography 
plays a role in bacterial distribution is growing (e.g. 
Stegen et  al. 2013, Lindh 2017, Lansac‐Tôha et  al. 
2020, Logares et al. 2020, Mateus-Barros et al. 2021). 
However, further studies covering large geographical 
scales, using comparable methods, and encompassing 
at least 700  km of overland distance between sam-
pling sites are necessary. This emphasizes the need 
for continental-scale sampling programs that apply 
standardized protocols to comprehensively unravel 
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the complex geographic mechanisms shaping bacte-
rial metacommunities.
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